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ABSTRACT
The registration of two 3D point clouds is an essential step in many applications. The objective of our work is to
estimate the best geometric transformation to merge two point clouds obtained from different sensors. In this paper,
we present a new approach for feature extraction which is distinguished by the nature of the extracted signature of
each point. The descriptor we propose is invariant to rotation and overcomes the problem of multi-resolution. To
validate our approach, we have tested on synthetic data and we have applied to heterogeneous real data.
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1 INTRODUCTION
Our study is within the framework of French National
project which aims at developing innovative tools dedi-
cated to underwater survey.

Dealing with the growing interest in the study of the
sea, the understanding of 3D models of underwater
scenes is becoming more essential. In this context,
we see the emergence of photogrammetry systems
more efficient. Indeed, photogrammetry has long been
used in underwater environment [Bas69a] and its great
advantage in comparison with other techniques is its
simplicity of implementation, the fact that it helps
researchers to make measurements without physical
contact with the scene and finally the diversity of
potential outcomes (3D measurements on object, 3D
reconstruction, orthophoto, restitution vector). How-
ever, photogrammetry is based on the use of optical
sensors, the constraints of the underwater environment
such as turbidity and the presence of suspended parti-
cles, require to work at different scales. The limits of
an optical sensor, lead us to the use of new instruments
that are not exposed to the same constraints such as the
sonar. High resolution sonar systems are an effective
way to measure objects on the seabed. Nevertheless
the magnitude is however not the same as the optical
sensors, the best acoustic active sensors have a range
of about 10 meters maximum for accuracy of one
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centimeter. Therefore, the resolution of the point cloud
obtained is rather low in comparison with that obtained
by the optical sensor, because the measurement is
made at a distance from the object measured with an
angular pitch of 1 degr. In our context, the registration
of the point cloud from photogrammetry will increase
the resolution of the measurements from the sonar
and helps to get the textures and color of objects for
visualization.
The fusion of optical and acoustic data is a very
promising technique for underwater objects survey,
which has received increasing attention in recent years.
The first attempts at fusion of optical and acoustic data
are presented in the work of Andrea Fusiello [Fus00a]
where acoustic data were used to approximate the
external orientation of the camera in the particular case
of the measurement of jacket for offshore. Research
work have also integrated acoustic and optical data
in an augmented reality environment, such as in
[Fus04a][Piz09a][Sing00a]. The authors describe the
use of techniques that allow the superposition of photo
mosaics on 3D bathymetric digital maps of terrain.
Negahdaripour et al. [Neg07] propose a new technique
for calibrating a stereo opti-acoustic system. This tech-
nique is used to estimate the best relative orientation
between the two sensors in order to model the epipolar
geometry of the system for the 3D reconstruction of the
scene. Research are consistent with the integration of
different sensors. Finally, the research works of Hurtos
and Cufi [Hur10a] are consistent with the integration
of different sensors, as is already the case for land
survey where laser and camera are often integrated into
a single tool.

More broadly, it can be found out that few studies have
developed innovative techniques for fusion of 3D data



obtained by utilizing optical and acoustic sensors in an
underwater environment.

In the next section, we will present a state of the art
methods of 3D/3D registration and we will discuss the
choice of the descriptor. Section 3 is devoted to the de-
scription of our method, including the presentation of
our 3D descriptor. Thereafter, we propose to evaluate
our algorithm on pairs of synthetic data. These results
will be discussed in section 4, and highlight the appli-
cation of our method on heterogeneous data. Finally,
section 5 contains the concluding remarks.

2 RELATED WORK
The goal of the 3D registration is to find the best rigid
transformation between two point clouds. To find the
right transformation, we need a set of corresponding
points, and the fact that they are unknown a priori,
makes the challenge difficult and interesting at the same
time.

Many studies concerning the registration of 3D point
clouds have been made over the last thirty years. How-
ever, the registration of two point sets of different res-
olutions remains an open problem with the issue of the
invariance of the signatures is a major point. There are
various ways to address the problem, we can classify
these techniques into two categories: iterative methods
and locales descriptors based techniques.

The iterative methods are often variants of the ICP (It-
erative Closest Point) method proposed by Besl and
McKay [Bes92a] remain the most used in the major-
ity of tools for automatic registration. One drawback to
this method is the fact that it converges to the first local
minimum that is often due to initialization with false
matches. Several solutions have been implemented
to solve this kind of problem, such the one proposed
by Chen and Medioni [Med91a], which replaces the
measurement of distance between points by measur-
ing the distance between a point and a tangential plane
which makes the algorithm less sensitive to local min-
ima. Rusinkiewicz and Levoy [Lev01a] compare sev-
eral variants of the standard algorithm in terms of con-
vergence time. They also propose an optimized method
where they obtained good results using a method to
classify points in the direction of their normal, then
sampling each class and rejecting the outliers. Vari-
ants of the ICP algorithm [Lev01a] [Tur94a] [Mas96a]
[Wei97a] are still trying to improve the initialization of
matched points step to calculate an approximation of
rigid transformation which can minimize the quadratic
error between the matched points.

The second category contains all methods that aim
to extract meaningful information (descriptor) of
one point thanks to its neighborhood. Jarvis and
Chua [Chu97a] present a signature for each point by
calculating the distances between the latter and all

neighboring points. Rusu et al. [Rad08a] propose the
PFH (Point Feature Histograms) method that charac-
terizes the local geometry of a 3D point and stores the
information in 16-bin histograms by using the method
that Wahl and Hirzinger [Wah03a] proposed for a
pair-relation histogram. And in [Rus09a], the authors
have optimized their method for real time use. Johnson
and Hebert [Joh99a] introduced the concept of spin
images where each spin image is a local descriptor
of a surface in a point P defined by its position and
its normal n. This method computes a 2D histogram
which is the projection of all points on the cylindrical
coordinates knowing that this method requires a point
cloud with uniform resolution. Within the same
category, 3D shape context [Fro04a] accumulates 3D
histograms of points within a sphere centered on the
basis point P and its north pole oriented with the
surface normal. In the same context, Tombari et al.
[Tom10a] present SHOT (Signature of Histograms
of OrienTations), which concatenates a set of local
histograms incorporating geometric information about
the position of neighboring points within a sphere
divided into several sectors. For each sector of the
sphere, a one-dimensional histogram is calculated by
accumulating the angles between the normal to the
point of interest with normal neighboring points. Mian
et al. [Mia10a] propose an interesting method for
finding keypoints on 3D models and they also used 3D
surface fitting techniques to detect the best matching.
However, this method requires a learning phase on a
base of 3D models. On the other hand, as they apply
a principal component analysis (PCA) to represent all
objects in the same referential, this induces an ambi-
guity of 180 degrees on each principal axis. Which
makes the phase of matching very difficult. Since the
PCA is also sensitive to the dispersion of points, this
would have been more appropriate to apply one of the
methods cited by Petrelli and Di Stefano [Pet11a] to
calculate a local reference frame.

In Table 1, we present a comparative of the most com-
monly used descriptors in terms of use for matching
between whole objects (Global), partial objects or data
with different resolutions (heterogeneous data).

Methods Global Partial Heterogeneous
data

Fast PFH Yes Yes No
SHOT Yes Yes No
Spin image Yes Yes No
Shape index Yes No No
Mian et al. Yes Yes No
Table 1: Comparison of feature extraction methods



3 FEATURE EXTRACTION AND
MATCHING

The purpose of this study is to find a descriptor for each
point, which will be invariant to a Euclidean transfor-
mation (rotation and translation) for application to real
data. Recall that in this study we used two different data
sources. The first one is an optical sensor that produces
photographs from which we get a 3D model with high
resolution. The second data source is a high-frequency
SONAR that provides a 3D point cloud with a lower
resolution but with an extended range.

Since the resolutions of the two point clouds are differ-
ent and one point from the sonar will never match with a
point from the optical sensor, we are oriented towards a
method of resampling surfaces. Our method is inspired
by the work of Mian et al. [Mia10a], who used an algo-
rithm for fitting surface presented by D’Erico [Eri08a].

3.1 Overall description of the method
The approach that we developed is based on the use
of a 3D descriptor invariant to rotation and on the 3D
surface fitting method. This is a novelty as far as we
know, this formalism has not been used in the context
of multimodal registration.

The principle of this method is illustrated in Figure
1. We can establish three major phases necessary for
the registration. The first phase is the extraction of
keypoints. We used the method LSP (Local Surface
Patches) [Che07a] that calculates the saliency of a point
according to its Shape Index. The second phase consists
in establish a good quality measure between two sets
of points. In our application, this task is difficult be-
cause this measure should assess a degree of similarity
between two surfaces of different orientations and res-
olutions. The procedure for extraction of the descriptor
will be detailed in the section 3.2. The last phase is
devoted to the computation of the rigid transformation
between the set of matched points. This transforma-
tion is computed by using singular value decomposi-
tion (SVD) to decompose the covariance matrix H as
follows:

H =
N

∑
i=1

(pi− centroidp)× (p′i− centroidp′) (1)

[U,S,V ] = SV D(H) (2)

R =V ×UT (3)
t =−R× centroidp + centroidp′ (4)

where N is the number of matched points.

3.2 3D Feature Descriptor
We were inspired by existing methods in the literature,
that try to extract a descriptor for each point relative to
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Figure 1: Global illustration of our approach.

its neighborhood. The neighborhood of a point is de-
termined by a sphere centered at that point (see Figure
2). This sort of descriptor is a local description of the
geometry.

Figure 2: Local surface extraction using a sphere.

The Figure 3 helps to explain our implementation. We
start first by extracting some keypoints from each point
cloud. As mentioned above, we used the LSP method
for the extraction of keypoints. This method computes
the saliency of a point according to its Shape Index,
which is an indication of the shape of a surface at a
point. This measure is defined by (5) where κ1 and κ2
are the maximum and minimum principal curvatures re-
spectively.

Si =
1
2
− 1

π
tan−1 κ1(p)+κ2(p)

κ1(p)−κ2(p)
(5)

The point is considered as keypoint, if its shape index
Si satisfies the following condition:



Si = max of shape indices and Si ≥ (1+α)×µ (6)
Si = min of shape indices and Si ≤ (1−β )×µ (7)

µ =
1
N

N

∑
j=1

(S j) 0≤ β ≤ 1 (8)

where α and β are two scalar parameters that serve to
control the keypoints selection and N is the number of
neighbors within a sphere.
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Figure 3: Feature extraction process.

The descriptor that we introduce in this section is based
on surface fitting method that was implemented by
D’Erico [Eri08a]. This method is not invariant to ro-
tation, where for the same set of points oriented dif-
ferently, we can have different surfaces. For this rea-
son, before extraction of the features from keypoints,
we first try to align the sets of neighbors of two key-
points to solve the problem of rotation of the surface
fitting method. We used two methods to align sets
of neighbors. In the case where the two sets have
the same cardinality, the rigid transformation between
these sets is computed by using singular value decom-
position (SVD) using equation (3) and (4). In the sec-
ond case where the cardinalities are different, we use
ICP to compute the best transformation. Since we use
this iterative method on a local surface, this step will
not consume a lot of time.

After the computation of the best transformation be-
tween two sets of neighboring points, we fit a surface
to the nearest neighbors of each keypoint. Thereafter,
the fitted surface is sampled into a grid of n×n (where
n = 20) (see Figure 4). The values of the Z coordinate

Figure 4: Fitted surface on nearest neighbors.

of the normal vector at each point along the grid rep-
resent information on the topology of the surface that
is invariant to rotation of the point cloud. These values
are stored in a vector, which represents a local descrip-
tor for each point. The matching between two points
is defined by the Euclidean distance between their de-
scriptors.

4 EXPERIMENTS
Although our main goal is to use this approach with
real data, we first tested it on synthetic data to verify
the results in the lack of any noise and to validate the
feasibility of this approach.

4.1 Validation of the method on synthetic
models

We created a virtual scene with three theoretical am-
phorae and we added the 3D model of the bunny found
in the Stanford1 database. The purpose of this test is
to identify the model of the bunny and align it with the
scene thereafter.

For this first test on synthetic data, the model and the
scene have the same resolution. We launched the test
on all the points of the query model (bunny) and we
found 82% of the points correctly matched. This result
is illustrated in Figure 5. On the left image is shown
the model and the right image the scene. The matched
points are red and for clarity, we have shown just 3 point
matches. We also notice in this same figure that the
points that are not matched are close to the bounds of
the model, which means that the descriptors of these
points have been influenced by the points of the am-
phora which is located close. A rigid transformation
between the model and the scene is calculated using the
equations (3) and (4), but to infer if the model is well
aligned with the scene, we calculate the mean square
error between the matched points. The error obtained
in this experiment is 0.05, which leads us to say that the
object is fully recognized and correctly aligned with the
scene (see Figure 6).

1 http://www.graphics.stanford.edu/data/3Dscanrep



Figure 5: Features matching applied on synthetic data.

Figure 6: Data alignment and 3D object recognition.

In order to test the robustness of our descriptor with
respect to the change of resolution, we took the same
scene of Figure 5 which initially contained 3616 points
and the bunny model which contains 1333 points. We
downsampled the bunny model with different sampling
step and we performed several tests. The test with a
model of 846 points gives the best results (see Fig-
ure 7), below this value, the quality of registration is
degraded. We did the same experiment using SHOT
and FPFH descriptors that we have implemented using
Point Cloud Library [Rus11a]. The results obtained are
summarized in Table 2. These results show that our
method is much better than SHOT and FPFH descrip-
tor fails to find matched points in the case of heteroge-
neous data, which is confirmed in the documentation of
the PCL library.

Methods Points Points Matched RMS
from model from scene points

FPFH 307/846 1447/3616 0 -
SHOT 289/846 761/3616 45 15.5
Our 846/846 3616/3616 299 0.045
approach

Table 2: Comparison of the results of our approach with
that of SHOT and FPFH methods.

As we mentioned above, the radius of the sphere is used
to select the set of neighbors of a point. We examined
the impact of this radius on the quality of registration.
We varied the radius of the sphere and we calculated
the mean square error of the registration using matched
points. The results are shown in Figure 8 and we found
that the best result is obtained with a radius equivalent
to 2% of the smallest dimension of the bounding box.

Figure 7: Matching between two point clouds with dif-
ferent resolutions.

Figure 8: Radius impact on quadratic error (RMS).

4.2 Validation of the method on real data
For this first experiment on real data, we used surveys
made in collaboration with the team of Prof. Guido
Vannini, Department of Medieval Archaeology at the
University of Florence, Italy. These surveys have ac-
companied the excavation of filling a vault at the last
level of the steeple of the church of San Domenico in
Prato, Italy. (see Figure 9).

Excavation for these surveys are comparable to under-
water archaeology excavations on shipwreck ceramics,
but with an access time to the site not limited by the
constraints of diving. Therefore, the acoustic measure-
ments were replaced here by the laser scanner surveys.

We used for this experiment, a model reconstructed
from 53 photographs representing a small area of one of
the five strata excavated (see Figure 10(a)) and the same
area measured with a laser scanner. The reconstruction
of the photogrammetric 3D model is obtained firstly by
SFM approach (Structure From Motion); extraction of
features, matching, pose estimation [Sna10a] and bun-
dle adjustment [Lou09a]. Then densification of the 3D
point cloud obtained with a patch approach [Fur10a]
that provides us 3D model with high resolution of dif-
ferent areas of the site that have been photographed.

The vessel surrounded by a red curve in Figure 10(b) is
used as a query object. A rotation of 30 degrees is ap-
plied to the model in order to test the invariance to rota-
tion of the descriptor. The Figure 10(c) shows the result
of the matching. The red dots represent the matched
points, we can find that the object has been recognized
in the scene. This result also supports our remark noted
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Figure 9: (a) Steeple of San Domenico, (b) Vault at the
last level, (c) Stratum of the excavation filling.

above. The unpaired points are located near the bound-
aries of the model. This means that the descriptor shape
changes by changing its neighborhood, which is obvi-
ous, while the rest of the points whose neighborhood
has not changed are well matched.

This last experiment presented below is made out on an
underwater cave named Imperial de Terre, which lies
off Marseille, France. Surveys were obtained during a
joint mission between the COMEX, the LSIS labora-
tory and Septentrion Environment association. Three
days were required, one day of preparation, a dive for
taking photographic views and a day for the sonar ac-
quisition.

We used three synchronized cameras and 2260 pho-
tographs were used to produce the 3D model with very
high resolution, shown in Figure 11(a). For the sec-
ond data source, we used the high-frequency SONAR

(a)

(b)

(c)

Figure 10: Recognition and registration of an amphora
from real data. (a) 3D point cloud measured by pho-
togrammetry, (b) 3D Mesh mesured by laser scanner,
the query object is highlighted by red curve, (c) Fea-
tures extraction and matching points

(BlueView BV5000) which provides a 3D point cloud
with a lower resolution, without color information but
with an extended range (see Figure 11(b)).

In Figure 12, we can see the result of the registration of
photogrammetric data with Sonar model. Since we had
a large volume of data with the presence of the noise,
we thought about a semi-automatic approach. The user
should select two areas of interest, one from the pho-
togrammetric model and the second from model Sonar,
to accelerate the research phase of homologous points.
We specify that this approach is better appreciated by
our partners archaeologists than automatic methods.

5 CONCLUSION AND FUTURE
WORK

In our work, we are required to use an acoustic sensor
to overcome the limitations of an optical sensor in an
underwater environment. Both sensors that were used,
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Figure 11: The Impérial de terre undersea cave (30m
depth). (a) Photogrammetry data. (b) Acoustic data.

Figure 12: Registration of acoustic and optical data.

produce point clouds with different resolutions. The
purpose of this study was to find a method of multi-
modal registration to merge the point clouds obtained
from each sensor. In this paper, we proposed an ap-
proach based on a descriptor invariant to rotation. The
descriptor for each point is computed according to these
neighboring points. To solve the problem of the resolu-
tion, we fit a surface on neighboring points. Thereafter,
the fitted surface is resampled to extract a descriptor,
that will be independent of the resolution of the point
cloud.

Fusion using object recognition technique of the point
clouds obtained from the SONAR and photogrammetry,
as we have shown with the experience on vases, has two
consequences: (1) the use for pose estimation (transfor-
mation between two clouds), (2) identification of the
type of the object. This technique can be used in the
case of Underwater Archaeology on shipwrecks with
a large number of objects known a priori such as am-
phorae. This will not only help archaeologists to merge
data, but also to specify the type of objects in the scene
and investigate the variations with respect to theoretical
models.

The purpose of this study was to find a method of multi-
modal registration to merge the point clouds from each
sensor. In this paper, we proposed an approach based
on a descriptor invariant to rotation approach. A handle
at each point is calculated based on these neighboring
points.

As for future work, we plan to test more state-of-the-
art descriptors, and we are still working on how best to
choose the neighborhood radius automatically for use
with any data without a priori information on the ge-
ometry of the point clouds.
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